
DynaDoodle
An example project to accompany the NXApp article

Branching Out With Dynamic Loading

Andrew Vyrros
Codeworks

av@codeworks.com

Overview
This project is meant to give you a concrete introduction to the concepts of 
dynamic loading. It implements a simple graphical display app. The app 
presents a selection of silly doodle drawings. These doodles are dynamically
loaded at launch time from external modules. The default modules are 
contained in the app package. Additional doodles can be placed in a 
directory named DynaDoodle inside ~/Library, /LocalLibrary, or 
/NextLibrary.

DynaDoodle shows you how to set up a project for dynamic loading. It 
demonstrates the way to create an abstract superclass for loaded classes, 
and the technique of distributing subclasses among individual bundle 
projects. It also explains how to search for module packages, and how to 
defer loading and instantiating until needed.

Technical details
The central object is an instance of the class Manager. It acts as NXApp's 
delegate, and handles basic application control duties. At launch time, it 
searches for doodle modules. For each doodle module it finds, it creates an 
instance of the class DoodleBundle.

DoodleBundle is a subclass of NXBundle geared specifically for managing 
doodle modules. Each DoodleBundle is responsible for a one module with a 
single loadable code file. DoodleBundle loads the class definitions in its code
file into the Objective C class hierarchy. It defers this until requested, so that



modules are not loaded until needed. Once loaded, DoodleBundle creates 
an instance of the module's principal class, the Doodle itself.

A Doodle is just a subclass of View for drawing silly images. It has 
foreground and background colors, and its own custom control View (sort of 
like a mini-inspector panel). Every module contains a single subclass of 
Doodle to do the actual drawing. The example supplies several different 
variations. Each of these has its own bundle project as a subproject of the 
main project. When the app is made, these are built as individual module 
packages and placed in the main app package.

The bundle projects are Checkerboard, Face, Smile, Spiral, and Star. They 
aren't meant to demonstrate any concepts, they just provide the Doodle 
subclasses for Manager to load. Most of the content is just silly non-
optimized drawing code.

Points of interest
· Searching for modules: Manager.m, -
createBundlesAndLoadModules: and    -
createBundlesForDirectory:loadModules:.

· Loading modules and instantiating Doodles: Manager.m, -
takeCurrentDoodleFrom:; DoodleBundle.m, -doodle.

· Deferred loading of modules: Manager.m, -appDidInit: and    -
createBundlesForDirectory:loadModules:; DoodleBundle.m, -
doodle.

· Getting localized names and descriptions of dynamic modules: 
DoodleBundle.m, -doodleName and -doodleDescription.

· Using custom nibs with dynamic modules: Doodle.m, -
customControlView, -loadNib and -didLoadNib.

· Putting additional classes in a module: Face.bproj, Face.m, 
EyePair.m, and Mouth.m.

Suggested modifications
· Change Manager so that, rather than deferring the loading of modules 

until they are needed, it loads all modules at launch time.



· Modify Manager so that it lets the user choose the default doodle that 
first appears at launch time.

· Add your own new Doodles. To create a new Doodle module, first add a
new bundle project in Project Builder. The project should contain at least one
class, a custom subclass of Doodle. This subclass needs to override the 
drawSelf:: method to perform its special drawing. It will also probably 
override initFrame: and didLoadNib, and may add some action methods 
for custom controls.

The bundle project should have a nib file named ClassName.nib, 
where ClassName is the name of the Doodle subclass. The nib will have the 
custom Doodle as owner, with at least the customControlView outlet 
connected to a Box or similar view. The project will also need a 
Doodle.strings file, which contains the strings for the Doodle name and 
description. You can generate this with genstrings and #define statements
similar to those at the beginning of the other custom Doodle sources, or just
copy one of the files and substitute your own values.


